La oferta del diablo: ¿irá Cruella al infierno?

cruellaCruella muere y va al infierno. El diablo le propone un juego al que sólo podrá jugar una vez. Si gana, irá al cielo, y si pierde arderá para siempre en el infierno.

Cruella sabe además que si juega este juego que le propone el diablo el primer día, tiene 1/2 de posibilidades de ganar, si apuesta el segundo tiene 2/3 de posibilidades de vencer, el tercer día 3/4, al cuarto 4/5, y así sucesivamente.

Obviamente, si permanece más días en el infierno antes de jugar, se incrementan sus posibilidades de ganar. La pregunta es: ¿cuál es el momento más razonable para que Cruella juegue?

La respuesta no es para nada obvia: como hemos comentado antes, tras cada día de espera, siempre puede incrementar sus posibilidades de éxito ya que:

n/(n+1) < (n+1)/(n+2).

Además, todo incremento en la probabilidad de ganancia de un juego con apuesta infinita tiene utilidad infinita[1]. Por ejemplo, si espera un año para jugar, las posibilidades de ganar de Cruella son de

365/366=0,997268,

pero si espera un año y un día, sus posibilidades de ganar son de

366/367=0,997275,

es decir, se incrementan en 0,000007. Aún así, 0,000007 multiplicado por infinito es infinito…

Por otro lado, parece razonable asumir el coste por retrasarse un día en el juego como finito: se trata de un día más de sufrimiento en el infierno. Así, el supuesto beneficio infinito que supone un retraso en jugar excederá siempre ese coste… Esta lógica parece sugerir que Cruella debería esperar eternamente para jugar.

Pero, claramente, esta estrategia debe ser por la misma razón rechazada: ¿por qué quedarse para siempre en el infierno con la esperanza de incrementar la posibilidad de abandonarlo? Para hacer esto, ¿no sería mejor arriesgarse y jugar?

Notas:

[1] Una función de utilidad es una función real que mide la ‘satisfacción’ o ‘utilidad’ obtenida por un consumidor cuando disfruta –vía consumo– de cierta cantidad de bienes.

[2] Esta paradoja relacionada con un juego infinito ha sido extraída y adaptada de [Erickson, G.W.; Fossa, J.A. (1998): Dictionary of paradox, Univ. Press of America, Lanham (EE.UU.)]

2 Responses to “La oferta del diablo: ¿irá Cruella al infierno?”


  1. 1 thetimethespaceandandtheman 12/07/2013 de 12:25

    Esperando siempre un ida mas, mejoramos la posibilidad de no sufrir infinitos dias.

    Diabolica proposicion.

    Me gusta

  2. 2 Marta MS 09/07/2018 de 08:02

    Reblogueó esto en Martams's Blogy comentado:

    #HaceCincoAños La oferta del diablo: ¿irá Cruella al infierno?

    Me gusta


Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

Conectando a %s

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios .




UPV/EHU
ZTF-FCT

Q2006 A2016

facebook facebook

Premio a la Mejor Entrada de marzo del Carnaval de Física 2014: El lago elgygytgyn (por Marta Macho)
Premio Mejor Post en la VII Edición del Carnaval de Humanidades..Gracias a Marta Macho
Premio a la Mejor Entrada de la Edición 4.1231 del Carnaval de Matemáticas.

Egutegia | Calendario

julio 2013
L M X J V S D
« Jun   Ago »
1234567
891011121314
15161718192021
22232425262728
293031  

Artxiboak | Archivo

Estatistika | Estadística

  • 4.849.423 sarrerak | visitas

RSS Noticias UPV/EHU

  • Se ha producido un error; es probable que la fuente esté fuera de servicio. Vuelve a intentarlo más tarde.

RSS UPV/EHU Albisteak

  • Se ha producido un error; es probable que la fuente esté fuera de servicio. Vuelve a intentarlo más tarde.

RSS Eventos UPV/EHU

  • Se ha producido un error; es probable que la fuente esté fuera de servicio. Vuelve a intentarlo más tarde.

RSS UPV/EHU Ekitaldiak

  • Se ha producido un error; es probable que la fuente esté fuera de servicio. Vuelve a intentarlo más tarde.
Follow on WordPress.com

A %d blogueros les gusta esto: