¡La mía es la más larga!

Por supuesto, me refiero a una corbata…

corbata

Os quiero hablar de la paradoja de la corbata, propuesta en 1930 por el matemático Maurice Kraitchik (1882-1957).

Pedro y Raúl tienen una preciosa corbata matemática para ocasiones especiales. Pedro propone a Raúl el siguiente juego: aquel que tenga la corbata más larga se la regala al otro. Raúl que sabe que Pedro es un tanto “embaucador” razona de la siguiente manera:

Mi corbata mide R centímetros. Hay una posibilidad sobre dos de que mi corbata sea más larga que la de Pedro, es decir, hay un 50% de posibilidades de perder mi corbata de longitud R. En caso contrario, ganaré la corbata de Pedro que mide P y es más larga que la mía. Así, en el 50% de los casos pierdo R y en el 50% de los casos gano más que R.  La ganancia media es positiva, así que jugaré con Pedro.

El juego es simétrico, así que Pedro puede hacer exactamente el mismo razonamiento para concluir que el juego le es favorable.

Pero esto es paradójico… Debe de haber algún error en el razonamiento.

En efecto, el razonamiento se realiza en un caso ideal que puede no existir:

  1. supone que todas las longitudes posibles e imaginables de corbatas tienen la misma probabilidad de existir,
  2. conjetura que dada una longitud cualquiera L, la mitad de las corbatas es de longitud mayor y la otra mitad es de longitud menor…

Es decir, el error viene de aplicar el principio de indiferencia… Para jugar a este juego, habría que dar una probabilidad a cada longitud de corbata previsible: por ejemplo, si P es igual a un metro… la probabilidad de encontrar corbatas más largas que un metro seguro que es menor que la de topar con una más corta…

BONUS: Maurice Kraitchik es el inventor de la paradoja de los dos sobres (1953). Se le debe además una fórmula para calcular el día de la semana de una fecha cualquiera en el calendario gregoriano:

Si d es el día, m el mes excepto para enero y febrero que se consideran respectivamente como los meses 13 y 14 del año anteriory a el año, entonces el día de la semana es igual al resto de la división por 7 de k donde:

k = d + 2m + [3(m + 1)/5] + a + [a/4] – [a/100] + [a/400] + 2

siendo [x] la parte entera de x y siendo el sábado el 0, el domingo el 1, etc.

Por ejemplo,

  • el 6  de julio de 1990 era viernes, ya que, d=6, m=7 y a=1990, así:

k = 6 + 14 + [24/5] + 1990 + [1990/4] – [1990/100] + [1990/400] + 2 = 6 + 14 + 4 + 1990 + 497 – 19 + 4 + 2 = 2498,

y el resto de la división de 2498 por 7 es 6.

  • el 15 de enero de 1992 fue miércoles, ya que d=15, m=13 y a=1991 recordar que enero es el mes 13 del año anterior 1991, así:

k = 15 + 26 + [42/5] + 1991 + [1991/4] – [1991/100] + [1991/400] + 2 = 15 + 26 + 8 + 1991 + 497 – 19 + 4 + 2 = 2524,

y el resto de la división de 2524 por 7 es 4.

1 Response to “¡La mía es la más larga!”


  1. 1 Marta MS 08/08/2016 en 09:45

    Reblogueó esto en Martams's Blogy comentado:

    #HaceTresAños ¡La mía es la más larga!
    #Paradoja de la corbata de Maurice Kraitchik

    Me gusta


Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s




UPV/EHU
ZTF-FCT

Q2006 A2016

facebook facebook

Premio a la Mejor Entrada de marzo del Carnaval de Física 2014: El lago elgygytgyn (por Marta Macho)
Premio Mejor Post en la VII Edición del Carnaval de Humanidades..Gracias a Marta Macho
Premio a la Mejor Entrada de la Edición 4.1231 del Carnaval de Matemáticas.

Egutegia | Calendario

agosto 2013
L M X J V S D
« Jul   Sep »
 1234
567891011
12131415161718
19202122232425
262728293031  

Artxiboak | Archivo

Estatistika | Estadística

  • 3,035,980 sarrerak | visitas

RSS Noticias UPV/EHU

  • Se ha producido un error; es probable que la fuente esté fuera de servicio. Vuelve a intentarlo más tarde.

RSS UPV/EHU Albisteak

  • Se ha producido un error; es probable que la fuente esté fuera de servicio. Vuelve a intentarlo más tarde.

RSS Eventos UPV/EHU

  • Se ha producido un error; es probable que la fuente esté fuera de servicio. Vuelve a intentarlo más tarde.

RSS UPV/EHU Ekitaldiak

  • Se ha producido un error; es probable que la fuente esté fuera de servicio. Vuelve a intentarlo más tarde.

A %d blogueros les gusta esto: